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15
Undecidability, indefinability and

incompleteness

We are now in a position to give a unified treatment of some of the
central negative results of logic: Church’s theorem on the undecidability
of logic, Tarski’s theorem on the indefinability of truth, and Gédel’s
first theorem on the incompleteness of systems of arithmetic. These
theorems can all be seen as more or less direct consequences of the
result of the last chapter, that all recursive functions are representable
in O, and a certain exceedingly ingenious lemma (‘the diagonal lemma’),
the idea of which is due to Gédel, and which we shall prove below. The
first notion that we have to introduce is that of a godel numbering.

A gédel numbering is an assignment of natural numbers (called ‘gédel
numbers’) to expressions (in some set) that meets these conditions: (1)
different gédel numbers are assigned to different expressions: (2) it is
effectively calculable what the gédel number of any expression is; (3) it
is effectively decidable whether a number is the godel number of some
expression in the set, and, if so, effectively calculable which expression
it is the godel number of.

Godel numberings enable one to regard interpreted languages sup-
posed to be ‘about’ the natural numbers —i.e. having the set of natural
numbers as the domain of their intended interpretation —as also referring
to the numbered expressions. The possibility then arises that certain
sentences, ostensibly referring to certain numbers, could be seen as refer-
ring, via the godel numbering, to certain expressions that are identical
with those very sentences themselves. The state of affairs just described
is no mere possibility; the proof of the diagonal lemma shows how it
arises, and succeeding theorems show how it may be exploited.

We shall consider a particular set of expressions and a particular godel
numbering, to which we appropriate the words ‘expression’ and ‘godel
number’. There is nothing special about our particular godel numbering;
the theorems and proofs that we are going to give with respect to the one
we use could have been given with respect to any number of others. Our
expressions are finite sequences of these (distinct) symbols.

We'll make the following ‘conventions’ about the identity of certain
symbols: we stipulate that xy = x, X, = ¥, fo=o,fi=".fl=+.f1="
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TABLE 15-1

() & 3 x f8 f5 f6 ... 43 A4 43
2 N 3 B B T T
=, x fe fi fi ... A A} A4:
- S
o g e
G ;
and 4§ = =. We now assign each symbol in Table 15-1 the number in

the corresponding location in Table 15-2 as its godel number:

TABLE 15-2

12 3 4 5 6 68 688
e 7 78 88
29 39 49 59 69 689 6889 79 789 ;889
399 599 699 6899 68899 8
o B0 S T 5 18058 =
39999

We'll write ‘gn’ to mean ‘the godel number of’. Thus
gn (%) = 5. gn(y) = 59, gn(0) = 6, gn (") = 68, gn (+) = 688,
gn(') = 6889, and gn(=) = 788.

We must now extend the godel numbering so that all finite sequences
of syr‘nbols in Table 15-1 are assigned godel numbers. (We don’t dis-
tinguish between a single symbol and the sequence which consists of that
one symbol.) The principle can be indicated in a single example: Sinc
gn(3d) = 4,gn(x) = 5,gn(() =1, and gn(=) = 788, we want . )

gn(@x(x =)
to be 4515788.

The principle is that if expression 4 has gédel number 7, and B has
Fhen AB, the expression formed by writing 4 immediatt’:ly before l;,
is to have as its gédel number the number denoted by the decim i
?rablc 'numeral formed by writing the decimal arabic numeral fora'
immediately before the decimal arabic numeral for j. It’s clear that ou;

godel numbering really is a gédel numbering i
paragraph, ering in the sense of the second
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of definability can be given for three- and more-place relations on natural
numbers; we won’t need this more general notion, however.)

A theory T'is called an extension of theory S if .S is a subset of T} i.e.,
if any theorem of Sis a theorem of 7. If fis a function that is representable
in S, and T is an extension of S, then f is representable in T, and indeed
is represented in T by the same formula that represents it in S. Similarly,
any formula that defines a set in some theory defines it in any extension

of that theory.

Lemma 3
If T is a consistent extension of (), then the set of gédel numbers of
theorems of T is not definable in 7.

Proof. Let T be an extension of Q. Then diag is representable in T'; for
as diagis a recursive function, and all recursive functions are represent-
able in Q, diag is representable in O, and hence is representable in any

extension of Q.
Suppose now that C(y) defines the set 6 of gddel numbers of theorems

of T. By the diagonal lemma, there is a sentence G such that
Fp G e —C("GY).
Let & = gn(G). Then
Fr G o — C(k). *)

Then by G. For if G is not a theorem of T, then k¢ 6, and so, as C()
defines 0, by — C(k), whence by (*), Fy G.
So kef. So b, C(k), as C(y) defines 6. So, by (*), Fp —G, and T is

therefore inconsistent.
A set of expressions is called decidable if the set of godel numbers of

its members is a recursive set. Thus a theory T is decidable iff the set
of gédel numbers of its theorems is recursive, iff the characteristic func-
tion of @ is recursive.

If a theory is decidable, then an effective method exists for deciding
whether any given sentence is a theorem of the theory. For to determine
whether a sentence is a theorem, calculate its gédel number first and
then calculate the value of the (recursive, hence calculable) characteristic
function for the godel number as argument. The sentence is a theorem i

the value is 1.
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Conversely, if a theory is not decidable, then unless Church’s thesis is
false, no effective method exists for deciding whether a given sentence
is a theorem of the theory. For if there were such a method, then the
characteristic function of the set of godel numbers of theore;ns would
also be effectively calculable, and hence recursive, by Church’s thesis.

Theorem 1

No consistent extension of Q is decidable.

Proof. Suppose T'is a consistent extension of Q. Then by Lemma 3, the
set 0 of gddel numbers of theorems of T is not definable in T l\ft;w if
A(x,y) represented the characteristic function f of 6 in T ther'1 Ax, 1)
'would define 0 in T. (For then if k€06, f(k) = 1, whence l-,l’.A(k 1); a’nd
if k ¢ 0, f(k) = o, whence F,Vy (A(k,y) &y = o), whence, as F ; 0 ,:1= I

l'-T —A(k, 1).) Thus the characteristic function of 6 is not repre(s)entablf;
in T, and therefore, as T is an extension of Q, not representable in Q
either, and hence not recursive. So 7'is not decidable.

Lemma 4
0 is not decidable.

Proof. O is a consistent extension of Q.

We can now give another proof of the proposition that first-order
logic .has no decision procedure, a proof that is rather different from the
one given in Chapter ro.

L.et L be the theory in L, the language of arithmetic, whose theorems
are just the valid sentences in L. All theorems of L are theorems of 0
of course, but as not all of (indeed, none of) the axioms of Q are Valid:
L is not an extension of O, and we cannot therefore apply theorem 1.
But because Q has only finitely many axioms, we can nonetheless prove
that' L is not decidable, and hence that there is no effective method for
deciding whether or not a first-order sentence is valid.

Theorem 2 (Church’s undecidability theorem)
L is not decidable.

Proof, Let C be a conjunction of the axioms of Q. Then a sentence 4 is
A theorem of Q iff C implies 4, iff (C - A) is valid, iff (C—4) is a





